

Engineering, Test & Technology
Boeing Research & Technology

Effects of Heat Flux on Heat Release Peak, Total, and Peak Time

An OSU Study

Authors: Yonas Behboud and Brian Johnson

Contributors: Yaw Agyei, Thomas Little, Theodoros Spanos, Clarence Lutz, Bill Mountain

Presenter: Yonas Behboud

November 2017 Materials Fire Test Working Group

Copyright © 2016 Boeing. All rights reserved.

Agenda

- Review Voltage vs Heat Flux Study
- Current Study Overview
- Results
- Data Analysis
- Voltage → Heat Release extension
- Summary and Next Steps

Reminder of Voltage vs Heat Flux Study (Presented 6/2017)

Abstract

Input voltage change could cause OSU heat flux to be outside of spec limits

Procedure

- Measure input voltage and resulting OSU heat flux
- Measure supply voltage changes over 3 days (Sunday, Monday, Tuesday) to capture a range of baselines and fluctuations
- Intentionally apply power load (lab equipment) to observe impact on OSU line voltage and resulting changes in OSU heat flux

Summary

- Supply voltage fluctuated over a range of ~6 V in the 3-day period
- Heat flux changes linearly with voltage: 1 V change results in 0.024 to 0.033
 W/cm² change in radiated heat flux
- For initial center heat flux value of 3.5 W/cm² to remain within specification,
 voltage change must be < ± 1.5 V during testing

Reminder of Voltage vs Heat Flux

- Notional relationship between Globar calibration power and time of day
- Specifications control heat flux but not voltage (ASTM E-906, Sec. F25.4)
- Initial voltage monitoring conducted indicated a dynamic supply voltage

Reminder of Voltage vs Heat Flux Study (Presented 6/2017)

Experimental Finding: Heat flux density changes linearly with voltage 1V change results in 0.024 to 0.033 W/cm² in radiated heat flux

Overview of Heat Flux vs. Heat Release Study (Current)

Experiment

Study the effects of varying heat flux on HR peak, total, and peak time results. Conduct 27 total tests across three heat flux levels:

- ≤3.25 W/cm²
- 3.5 W/cm²
- ≥3.75 W/cm²

Equipment

- OSU heat release unit.
- Voltage logger installed and recording (10 sec sample interval)
- Multimeter monitored real-time supply voltage

Overview of Heat Flux vs. Heat Release Study (Continued)

Procedure

- 1. Standard OSU startup allow 1.5 hours for mv output to stabilize
- Heat flux calibration at 3.5 W/cm²
- 3. Run 3 standard panels (prepreg / honeycomb sandwich)
- 4. Vary heat flux settings to produce ≤3.25 W/cm², 3.5 W/cm², and
 ≥3.75 W/cm² following a random order
- 5. At each heat flux level, run 3 standard panels before moving to the next level until a total of 27 tests results are generated 9 at each of the three heat flux settings

Experimental Results

Data Tags					Heat Flux (W/cm2)						Supply Voltage (V)			Ambient Conditions Air Pressure (mmHg)				Heat Release			
																	, ,		Peak		Total
																			Heat		Heat
													Average					Thermo-	Releas		Releas
Data										Average		120s	120s				120s	pile	е	Peak	е
Poin				Start	Initial	Target	Upper Bar		Final	Heat Flux	Initial	Final	Logged	Temp	Humidit	Initial	Final	Baselin	(kW/m ²	Time	(kW
t	Run #	SH	_	Time	Heat Flux	Heat Flux	Setting	Setting	Heat Flux	(i+f)/2	Voltage	Voltage	Voltage	(°C)	y (%RH)	Pressure	Pressure	e (mV))	(s)	min/m²
V_0	0		8/30	7:17 AM	3.49	3.50	53.5	65.0		3.49	206.9	206.7	206.6	22.7	56	197	198	26.2	53.81	46	33.55
V ₁	1			7:27 AM	3.49						206.8	206.9	206.6	22.7	56	199	199	25.9	56.03	44	38.03
	2		8/30	7:48 AM		3.50	53.5	65.0		3.49	206.4	206.5	206.2	22.7	56	200	197	26.0	51.89	45	33.64
	3			7:56 AM					*		206.6	206.5	206.4	22.7	55	199	197	25.9	60.50	45	39.70
V ₂	4	1		8:44 AM	3.10						207.1	207.0	207.0	22.8	55	200	199	24.1	49.40	75	26.62
	5	2	8/30	8:52 AM		3.25	49.2	59.8		3.09	206.9	207.2	206.9	22.7	55	198	201	23.9	52.50	76	28.17
	6	3		8:59 AM					3.08		207.2	207.4	207.1	22.7	55	200	200	23.9	50.77	67	28.87
V_3	7	4		10:04 AM	3.48						207.0	207.2	206.8	22.9	55	200	201	25.9	58.78	44	38.47
	8	1	8/30	10:11 AM		3.50	53.5	65.0		3.51	206.5	206.6	206.7	22.9	55	201	198	25.9	58.13	45	39.10
	9	2		10:18 AM					3.54		207.2	207.2	207.0	22.9	54	198	199	26.1	54.87	47	34.16
V_4	10	3		11:04 AM	3.86						206.2	206.4	206.1	23.1	54	200	202	27.4	49.35	43	33.61
	11	4	8/30	11:12 AM		3.75	57.8	70.2		3.86	206.1	206.2	206.0	23.1	54	202	202	27.2	58.37	39	39.99
	12	1		11:19 AM					3.86		206.1	205.9	206.0	23.1	55	202	200	27.2	62.90	38	39.22
V_5	13	2		12:16 PM	3.85						205.9	205.9	205.8	23.0	55	202	199	26.8	60.71	40	39.41
	14	3	8/30	12:22 PM		3.75	57.8	70.2		3.85	205.9	205.8	205.8	23.1	55	200	201	27.1	63.46	41	39.01
	15	4		12:29 PM					3.85		205.6	205.8	205.6	23.2	54	201	202	27.1	63.22	40	42.35
V_6	16	1		1:03 PM	3.12						206.2	206.0	206.0	23.4	55	198	200	24.4	50.22	78	25.91
	17	2	8/30	1:09 PM		3.25	49.2	59.8		3.08	205.8	205.9	205.6	23.4	55	200	201	24.2	52.36	75	26.31
	18	3		1:16 PM					3.03		205.7	206.1	205.8	23.2	55	200	202	24.1	47.71	70	29.66
V ₇	19	4		2:05 PM	3.45						205.9	206.0	205.9	23.3	55	201	200	26.0	54.32	47	35.88
	20	1	8/30	2:12 PM		3.50	53.5	65.0		3.48	206.2	206.2	206.1	23.2	55	199	202	26.1	63.17	43	36.79
	21	2		2:18 PM					3.52		206.4	206.2	206.1	23.3	55	202	202	26.0	53.76	46	36.63
V ₈	22	3		3:04 PM	3.82						206.0	206.0	205.8	23.3	55	203	200	27.2	53.73	40	37.91
	23	4	8/30	3:11 PM		3.75	57.8	70.2		3.85	205.8	205.6	205.6	23.3	55	200	200	27.2	60.68	39	40.07
	24	1		3:17 PM					3.88		205.7	207.0	205.4	23.2	55	201	202	27.4	60.88	40	38.16
V ₉	25	2		4:16 PM	3.04						206.5	206.7	206.5	23.1	55	200	200	24.2	49.12	78	28.40
	26	3	8/30	4:22 PM		3.25	49.2	59.8		3.06	206.8	206.5	206.6	23.1	55	200	200	24.4	47.06	64	26.84
	27	4		4:29 PM					3.08		206.7	206.8	206.6	23.2	55	201	202	24.3	52.31	64	31.22

^{*} Data point V_1 final heat flux not measured due to voltage jump of approx. 1V at end of 3rd run (did not affect results – occurred after measurement period)

Data Analysis – Raw Data Scatter Plot

Regression Using 3-Point Data Averages

Copyright © 2016 Boeing. All rights reserved.

Heat Release Change Due to Supply Voltage Variation

Radiated Heat Flux (W/cm2)

What impact could this have on coupon test results?

Heat	t Flux	Peak Heat Release				
3.25	W/cm ²	62.1] -			
3.45	W/cm ²	64.4				
3.50	W/cm ²	65.0				
3.55	W/cm ²	65.6				
3.75	W/cm ²	68.0				

6 point range

Heat	: Flux	2 min Total Heat Release				
3.25	W/cm ²	61.5				
3.45	W/cm ²	64.3				
3.50	W/cm ²	65.0				
3.55	W/cm ²	65.7				
3.75	W/cm ²	68.5				

7 point range

△ Voltage

△ Heat Flux

∆Results

Heat Release Change Due to Supply Voltage Variation

Peak Shape / Timing

General Observations with Decreasing Heat Flux

- Lower peak values
- Lower 2 min total values
- Peaks shift right (starts and ends later)
- Wider peaks

Summary and Next Steps

Voltage fluctuations may cause significant variations in HR results

 Experiment focused on voltage as the prime variable – cognizant that other variables still exist and need to be studied further

Need voltage control limits in specifications (Handbook, HR2, etc.)

- Currently no voltage control in spec for OSU (Appendix F)
- HR2 draft specifies control within +/- 2.5% (+/- 5.2V at 208V supply)
- Need to consider the impact of heat flux over the range of materials

Power conditioners can provide up to +/-1% voltage control

- 15 kVA Single Phase Power Conditioner (~\$11k)
 - May sufficiently isolate from 'natural' variation, but may still be susceptible to large local load cycling
- 15 kVA Single Phase UPS (~\$15k)
 - Provides tighter voltage regulation than the Power Conditioner and immune to intra-day power swings
 - Yearly maintenance required, batteries require replacement every 5-10 years.

